马海祥博客是一个专注于分享SEO优化、网站制作、网络营销和运营思维的自媒体博客!
马海祥博客 > 运营思维 > 数据分析 > 常见的数据分析基本思路及手法

常见的数据分析基本思路及手法

时间:2016-08-16   文章来源:马海祥博客   访问次数:

数据分析是产品运营中极具战略意义的一环,从宏观到微观分析,通过表层数据挖掘产品问题,是每个运营人的必修课。

常见的数据分析基本思路及手法-马海祥博客

回顾自己这么多年的网络运营,数据分析起了非常大的作用,能够做好数据分析,又是建立在一些好的数据分析思路及手法的协助下,今天我就在马海祥博客上跟大家分享下自己常见的数据分析基本思路及手法:

1、5W2H分析法

What(用户要什么?)Why(为什么要?)Where(从哪儿得到?)When(我们什么时候做?)Who(对谁做?)How much(给多少?)How(怎么做?)

常见的数据分析基本思路及手法-马海祥博客

PS:(what)用户要极品装备!(why)因为他们要增强战力(where)装备从BOSS身上得到;(when)我们国庆节做这个活动!(who)针对所有玩家!(how much)BOSS爆率设定为XX(how)活动以怪物攻城形式进行。

上述是一种需求的转换形式,就产品而言,又要以数据为支持,不能因某个元素而动整体;从大局出发,根据整体数据趋势进行细化分析,那么就目前而言的分析手法,又有对比分析、交叉分析,相关分析,回归分析,聚类分析等等。

如果某款游戏下载量高,注册量低;是否因为服务器登陆问题或注册流程繁琐,是否近期网络出现故障?

如果某款游戏数据一直良好,某段时间数据突然跌落;是否因为市场宣传力度减弱,是否因为用户生命周期上限,是否因为其他竞品冲击(具体可查看马海祥博客《如何做好产品数据的竞品分析》的相关介绍)?

所以,真正的数据分析不在于数据本身,而在于分析能力的概述;数据是参照物,是标杆,只有分析才是行为,是改变,那么如何分析,综合上面两个举例,已经可以很清晰的看到立体式分析。

2、立体式分析

立体式分析也就是维度分析,产品数据的发掘不应该仅仅拘泥于产品,大环境下的娱乐产物必须综合产品、市场、用户进行不同切入点分析。

要知道,数据分析是基于商业目的,而商业离不开用户和市场,说白了就是结合不同维度进行有目的的数据收集、整理、加过和分析,他的存在价值就是通过数据提取有价值的信息去优化产品从而拉更多人,赚更多钱(具体可查看马海祥博客《如何通过大数据来获取商业价值》的相关介绍)。

那么如何分析,大致思路又是如何?

(1)、为什么分析?

首先,你得知道为什么分析?付费同比、环比波动较大?

(2)、分析目标是谁?

数据波动,目标是谁?付费总额波动,付费用户数据如何?

(3)、想达到什么效果?

通过分析付费用户,找到问题,解决问题从而提升收入?

(4)、需要什么?

想做出分析,需要什么?付费总额,付费人数?付费次数?付费人数各等级占比?

(5)、如何采集?

直接数据库调取?或者交给程序猿导出?

(6)、如何整理?

数据出来,如何整理付费等级、付费次数报表?

(7)、如何分析?

整理完毕,如何对数据进行综合分析,相关分析?用户资源是否饱和?市场其他明星产品充值活动更具吸引力?产品付费系统是否出现问题,是否失去新鲜感?

(8)、如何展现?

找准问题,老付费用户流失了很多,低端付费转化低;很多是多少?转化低是什么概念?如何用图表表现?

(9)、如何输出?

找准问题,如何输出?如何将这份知识报表转换为产品商业价值体系?如何说服程序?如何说服策划?如何具体执行?如何将知识转换为生产力?

上述是比较系统的分析思路,细化而言;对于数据分析,又需要我们根据不同人群建立不同的用户模型;例如流失模型、流失特征;充值模型等等。

3、AARRR模型中的基本数据

接下来我们再综合AARRR模型分解一些较为常见的数据:Acquisition(获取)、Activation(活跃)、Retention(留存)、Revenue(收益)、Refer(传播)。

常见的数据分析基本思路及手法-马海祥博客

上图为AARRR模型中的基本数据,我们再对以往数据进行总结:

(1)、日新增用户数:DNU

每日注册并登陆游戏用户数,主要衡量渠道贡献新用户份额以及质量。

(2)、一次会话用户:DOSU

新登用户中只有一次会话的用户,主要衡量渠道推广质量如何,产品初始转化情况,用户导入障碍点检查。

(3)、日活跃用户:DAU

每日登陆过游戏的用户数,主要衡量核心用户规模,用户整体趋势随产品周期阶段变化,细分可概括新用户转化、老用户活跃与流失情况。

(4)、周/月活跃用户:WAU、MAU

截止统计日,周/月登陆游戏用户数,主要衡量周期用户规模,产品粘性,以及产品生命周期性的数据趋势表现。

(5)、用户活跃度:DAU/MAU

主要衡量用户粘度,通过公式计算用户游戏参与度,人气发展趋势,以及用户活跃天数统计。

(6)、留存

次日、三日、七日、双周、月留存;表现不同时期,用户对游戏的适应性,评估渠道用户质量;衡量用户对游戏黏性。

(7)、付费率:PUR

统计时间内,付费用户占活跃用户比例;主要衡量产品付费引导是否合理,付费点是否吸引人;付费活动是否引导用户付费倾向,付费转化是否达到预期。

(8)、活跃付费用户数:APA

统计时间内,成功付费用户数,主要衡量产品付费用户规模,付费用户构成,付费体系稳定性如何。

(9)、每活跃用户平均收益:ARPU

统计时间内,活跃用户对游戏产生的人均收入,主要衡量不同渠道的用户质量,游戏收益,以及活跃用户与人均贡献关系。

(10)、每付费用户平均收益:ARPPU

统计时间内,付费用户对游戏产生的平均收入,主要衡量游戏付费用户的付费水平,整体付费趋势,以及不同付费用户有何特征。

(11)、平均生命周期:TV

统计周期内,用户平均游戏会话时长,主要衡量产品粘性,用户活跃度情况。

(12)、生命周期价值:LTV

用户在生命周期内,为游戏贡献价值;主要衡量用户群与渠道的利润贡献,用户在游戏中的价值表现。

(13)、用户获取成本:CAC

用户获取成本,主要衡量获取有效用户的成本,便于渠道选择,市场投放。

(14)、投入产出比:ROI

投入与产出关系对比,主要衡量产品推广盈利/亏损状态,筛选推广渠道,分析每个渠道的流量变现能力,实时分析,衡量渠道付费流量获取的边际效应,拿捏投入力度,结合其他数据(新增、流失、留存、付费等)调整游戏,进行流量转化与梳理。

4、杜邦分析法

杜邦分析法(DuPont Analysis)是利用几种主要的财务比率之间的关系来综合地分析企业的财务状况。具体来说,它是一种用来评价公司赢利能力和股东权益回报水平,从财务角度评价企业绩效的一种经典方法。

其基本思想是将企业净资产收益率逐级分解为多项财务比率乘积,这样有助于深入分析比较企业经营业绩,由于这种分析方法最早由美国杜邦公司使用,故名杜邦分析法。

常见的数据分析基本思路及手法-马海祥博客

杜邦分析法的的基本思路:

(1)、权益净利率,也称权益报酬率,是一个综合性最强的财务分析指标,是杜邦分析系统的核心。

(2)、资产净利率是影响权益净利率的最重要的指标,具有很强的综合性,而资产净利率又取决于销售净利率和总资产周转率的高低,总资产周转率是反映总资产的周转速度。

对资产周转率的分析,需要对影响资产周转的各因素进行分析,以判明影响公司资产周转的主要问题在哪里,销售净利率反映销售收入的收益水平,扩大销售收入,降低成本费用是提高企业销售利润率的根本途径,而扩大销售,同时也是提高资产周转率的必要条件和途径。

(3)、权益乘数表示企业的负债程度,反映了公司利用财务杠杆进行经营活动的程度。

资产负债率高,权益乘数就大,这说明公司负债程度高,公司会有较多的杠杆利益,但风险也高;反之,资产负债率低,权益乘数就小,这说明公司负债程度低,公司会有较少的杠杆利益,但相应所承担的风险也低。

5、SWOT分析模型

在战略规划报告里,SWOT分析算是一个众所周知的工具了。SWOT分析代表分析企业优势(strengths)、劣势(weakness)、机会(opportunity)和威胁(threats),因此,SWOT分析实际上是将对企业内外部条件各方面内容进行综合和概括,进而分析组织的优劣势、面临的机会和威胁的一种方法。

SWOT分析有四种不同类型的组合:优势——机会(SO)组合、弱点——机会(WO)组合、优势——威胁(ST)组合和弱点——威胁(WT)组合。

常见的数据分析基本思路及手法-马海祥博客

优势——机会(SO)战略是一种发展企业内部优势与利用外部机会的战略,是一种理想的战略模式。当企业具有特定方面的优势,而外部环境又为发挥这种优势提供有利机会时,可以采取该战略。

例如:良好的产品市场前景、供应商规模扩大和竞争对手有财务危机等外部条件,配以企业市场份额提高等内在优势可成为企业收购竞争对手、扩大生产规模的有利条件。

弱点——机会(WO)战略是利用外部机会来弥补内部弱点,使企业改劣势而获取优势的战略。存在外部机会,但由于企业存在一些内部弱点而妨碍其利用机会,可采取措施先克服这些弱点。

例如,若企业弱点是原材料供应不足和生产能力不够,从成本角度看,前者会导致开工不足、生产能力闲置、单位成本上升,而加班加点会导致一些附加费用。在产品市场前景看好的前提下,企业可利用供应商扩大规模、新技术设备降价、竞争对手财务危机等机会,实现纵向整合战略,重构企业价值链,以保证原材料供应,同时可考虑购置生产线来克服生产能力不足及设备老化等缺点。通过克服这些弱点,企业可能进一步利用各种外部机会,降低成本,取得成本优势,最终赢得竞争优势。

优势——威胁(ST)战略是指企业利用自身优势,回避或减轻外部威胁所造成的影响。

如竞争对手利用新技术大幅度降低成本,给企业很大成本压力;同时材料供应紧张,其价格可能上涨;消费者要求大幅度提高产品质量;企业还要支付高额环保成本;等等,这些都会导致企业成本状况进一步恶化,使之在竞争中处于非常不利的地位,但若企业拥有充足的现金、熟练的技术工人和较强的产品开发能力,便可利用这些优势开发新工艺,简化生产工艺过程,提高原材料利用率,从而降低材料消耗和生产成本。

另外,开发新技术产品也是企业可选择的战略。新技术、新材料和新工艺的开发与应用是最具潜力的成本降低措施,同时它可提高产品质量,从而回避外部威胁影响。

弱点——威胁(WT)战略是一种旨在减少内部弱点,回避外部环境威胁的防御性技术。

当企业存在内忧外患时,往往面临生存危机,降低成本也许成为改变劣势的主要措施。当企业成本状况恶化,原材料供应不足,生产能力不够,无法实现规模效益,且设备老化,使企业在成本方面难以有大作为,这时将迫使企业采取目标聚集战略或差异化战略,以回避成本方面的劣势,并回避成本原因带来的威胁。

以上是关于数据的一些概括,对于数据分析,需要我们以理性的眼光对待;因为各家对相关数据定义不同,算法不同;在对数据进行分析时需要我们看清分析误区,综合其他数据进行分析,根据自己的数据分析思路制定相应的分析方案,切不可盲目分析,粗暴分析。

马海祥博客点评:

精细化的运营数据分析工作,思维不能乱,思维乱了,全盘皆乱;这时候的数据分析也无法提供正确的考量价值,如果觉得数据分析毫无头绪,杂乱无章;冷静下来,理顺思路,有大概的数据构思之后再做行动;只有这样才能培养自己严谨的逻辑分析能力。

本文发布于马海祥博客文章,如想转载,请注明原文网址摘自于http://www.mahaixiang.cn/sjfx/1612.html,注明出处;否则,禁止转载;谢谢配合!

相关标签搜索: 数据分析  

上一篇:零基础学习数据地图的制作与分析
下一篇:分类型数据可视化的操作方法及案例分析

您可能还会对以下这些文章感兴趣!

  • 零基础学习数据地图的制作与分析

    有时在实际工作中会碰到这种情况,即数据与地名有关,这时虽然也能用Excel的图表来表现,但如果能将数据和地图结合起来,将会收到更加好的效果,应用地图来分析和展示与位置相关的数据,要比在Excel中单纯的数字更为明确和直观,让人一目了然,数据地图就是解决此类问题……【查看全文

    阅读:1884关键词: 数据地图   地图制作   数据分析   日期:2016-07-14
  • 大数据时代下的第三方数据公司和甲方公司的差异

    现在是一个大数据时代,人人嘴边都挂着数据创造价值、数据挖掘等一些热词。各公司内部也逐渐认识到数据的重要性,纷纷成立数据部门,期待数据可以真正的为业务服务。另外,也有一些专做数据服务的第三方公司不断涌现,希望能帮助产生数据的甲方分担数据分析的担子,挖掘……【查看全文

    阅读:1062关键词: 大数据   大数据时代   第三方数据   数据公司   日期:2014-02-23
  • 关于用户调研数据分析中常见的一些误区

    近期和一些做用户研究的人员进行了交流,发现很多做这个行业的人都对自己所做的工作有些迷茫,报告写了很多,数据也分析了很多,但是却感觉对产品的实际运营帮助不大,甚至分析出来的结果和实际情况比偏差很大。其实用户研究并不是一个新兴的领域,在很多传统行业,用户……【查看全文

    阅读:813关键词: 眼球追踪   眼球追踪技术   用户调研   调研误区   调研探讨   数据分析   日期:2013-12-24
  • 分析解读数据的真正目的是什么?

    最近我在马海祥博客上新开了一个数据分析专栏,主要是通过平时的一些数据解析来合理科学的提高网站的各项指标的。可能一说到数据,可能就会立马让人想到是数字、图表、模型、方程等容易让人怯步的词语。其实做数据分析的真正目的和意义,是躲在背后的那些人。 在营销学……【查看全文

    阅读:1002关键词: 分析数据   解读数据   解读数据目的   日期:2013-08-26
  • 数据分析的流程及分析方法

    数据分析是指通过建立审计分析模型对数据进行核对、检查、复算、判断等操作,将被审计单位数据的现实状态与理想状态进行比较,从而发现审计线索,搜集审计证据的过程,在实用中,数据分析可帮助人们作出判断,以便采取适当行动,数据分析的目的是把隐没在看来杂乱无章……【查看全文

    阅读:11073关键词: 数据分析   数据分析流程   分析方法   日期:2014-09-19
  • 分类型数据可视化的操作方法及案例分析

    在当前互联网,各种数据可视化图表层出不穷,本文尝试对数据可视化的方法进行归纳,数据可视化可以将海量数据通过图形、表格等形式直观反映给大众,降低数据读取门槛,可以让企业通过形象化方式对自身产品进行营销。数据可视化技术的基本思想,是将数据库中每一个数据项……【查看全文

    阅读:1876关键词: 数据分析   案例分析   日期:2016-09-28
  • 预测2020年数据中心行业发展的10个趋势分析

    岁末年初正是对未来一年数据中心行业发展进行预测的时候,人们将会看到一些事情的到来:云计算的兴起、SSD硬盘的发展,以及其他问题,例如许多企业将业务从云平台遣返回到内部部署数据中心。而专家对数据中心行业的预测可能偶尔会带来一些惊喜。随着大数据行业和技术的发展,企业需要改善内部部署数据中心和云计算资源之间的平衡,在服务器上采用人工智能技术,并努力有效地管理数据蔓延。行业媒体通常会对未来一年进行预测,像往常一……【查看全文

    阅读:33关键词: 2020年   数据中心   行业发展   趋势分析   日期:2019-12-26
  • 大数据环境下衍生出的营销思路或策略

    “大数据”的概念距问世已经有39年了,而大数据营销的时代在前几年才得以到来,这种基于数据协同和深度计算的个性化营销正在用其巨大而全面的影响力改变着营销的格局和战略方向。淘宝每天处理数以万计的交易数据,Facebook每天接待40亿访客,在互联网这种领域,……【查看全文

    阅读:671关键词: 大数据   营销思路   营销策略   大数据营销   日期:2019-05-03
  • 解读2014年中国移动互联网用户行为洞察研究报告

    2014中国移动互联网用户行为洞察报告旨在协助行业上下游相关人士了解用户行为的最新动向,全面透析用户的媒体使用习惯、新媒体使用方式、对移动广告的接受程度以及移动广告如何影响用户的购买决策。更多移动互联网用户将手机作为他们首选或唯一的上网工具。……【查看全文

    阅读:1648关键词: 解读报告   中国互联网   移动互联网   用户行为   研究报告   日期:2014-01-14
  • 如何以客户为中心进行数据挖掘与分析

    数据挖掘与分析可以说是信息领域发展最快的技术,很多不同领域的专家都从中获得了发展的空间,使得数据挖掘成为企业界讨论的热门话题,随着信息技术的发展,人们采集数据的手段越来越丰富,由此积累的数据日益膨胀,数据量达到GB甚至TB级,而且大数据也成为数据分析主流……【查看全文

    阅读:7628关键词: 数据挖掘   数据分析   分析数据   日期:2014-12-27
↓ 点击查看更多 ↓

互联网更多>>

SEO优化 更多>>

未来的站内SEO优化需要做些什么? 网站前端性能优化中最容易被忽略的10个技巧